Schedule
PRELIMINARY SUGGESTED READING
Books
-
Achenbach, J.D. (1984). Wave Propagation in Elastic Solids, Vol. 16, North-Holland Publishing Co., pp. 425.
-
Albers, B. (2010). Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Habilitation thesis. Veröffentlichungen des Grundbauinstituts der Technischen Universität Berlin, Shaker-Verlag, Vol. 48.
-
Bensoussan, A., Lions, J.L., Papanicolaou, G. (1978). Asymptotic Analysis of Periodic Structures. Studies in Mathematics and its Applications, Vol. 5, North-Holland Publishing Co., pp. 721.
-
Bourbie, T., Coussy, O., Zinszner, B. (1987). Acoustics of Porous Media. Editions Technip, Paris, pp. 334.
-
Brillouin, L. (1953). Wave Propagation in Periodic Structures. Dover Publ., 2nd Edition, New York, pp. 255.
-
Christensen, R. M. (2003). Theory of Viscoelasticity. 2nd Dover Publication, pp. 364.
-
Kausel, E. (2006). Fundamental Solutions in Elastodynamics, Cambridge Press Publisher, pp. 251.
-
Krylov, V.V. (2019). Ground Vibrations from High-Speed Railways: Prediction and Migration. Publisher: Institution of Civil Engineers (ICE), pp. 367.
-
Lai C.G., Wilmanski K. (Eds). (2005). Surface Waves in Geomechanics: Direct and Inverse Modeling for Soils and Rocks, CISM Lecture Notes N. 481, Springer Publishing Co., pp. 385.
-
Whitham, G.B. (1999). Linear and Nonlinear Waves, Wiley-Interscience Publishing Co., pp. 658.
Articles
-
Albers, B. (2009). Analysis of the Propagation of Sound Waves in Partially Saturated Soils by Means of a Macroscopic Linear Poroelastic Model, Transport in Porous Media, Vol. 80 (1), pp. 173-192.
-
Brûlé, S., Enoch, S., Guenneau, S. (2019). Role of Nanophotonics in the Birth of Seismic Mégastructures. Nanophotonics, Vol. 8 (10), pp. 1591-1605.
-
Detmann, B. (2018). On Models for Porous Media Containing One, Two or Three Pore Fluids and the Determination of Associated Macroscopic Material Parameters. Mechanics Research Communications, Vol. 93, pp. 35–40.
-
Hussein, M.I., Leamy, M. J. and Ruzzene, M. (2014). Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook. Applied Mechanics Reviews, Vol. 66 (4), pp. 38.
-
Kausel, E., Estaire, J., Crespo-Chacón, I. (2020). Proof of Critical Speed of High-Speed Rail Underlain by Stratified Media. Proceedings of the Royal Society A, Vol. 476 (2240).
-
Kausel, E. (2013). Lamb’s Problem at its Simplest. Proceedings of the Royal Society A, Vol. 469 (2149).
-
Quintal, B., Steeb, H., Frehner, M., Schmalholz, S. M. (2011). Quasi-Static Finite Element Modeling of Seismic Attenuation and Dispersion Due to Wave-Induced Fluid Flow in Poroelastic Media. Journal of Geophysical Research: Solid Earth, Vol. 116, Issue B1.
-
Steeb, H. and J. Renner (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, Vol. 130 (2): 437-461.
-
Wilmański, K., Albers, B. (2003). Acoustic Waves in Porous Solid-Fluid Mixtures, in: Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, N. Kirchner, K. Hutter (Ed.), Lecture Notes in Applied and Computational Mechanics, Springer, Berlin, Heidelberg, pp. 285-313.